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PROGRESS IN THE MODELING OF THE SHOCK RESPONSE

AND MITIGATON OF THICK COMIPOSITE SHELLS

1. INTRODUCTION

Future naval vessals are expected to utilize increasing amounts of thick polymer matrix com-

posite materials in their structure due to significant system performance enhancements achievable

with these stiff, strong, lightweight materials. In order to apply these materials to submarine and

surface ship structures, their behavior under highly transient shock loadings must be better under-

stood. Current analysis methods for impact and underwater shock response were developed pri-

marily to predict the behavior of ductile, homogeneous metal structures, which under severe loads

deform piastically due to slip along shear planes. Composites are very heterogeneous materials,

combining high performance fibers in a viscoelastic matrix. Also, composites tend to be highly

dispersive to propagating waves and deform nonlinearly under severe load through the develop-

ment of networks of micro-cracks.

This report is a continuation of our efforts [1-5] to develop a methodology for predicting the

response of thick composite materials subjected to multi-dimensional shock loadings. In develop-

ing the numerical aspects of this work, the explicit transient finite element programs PRONTO2D

[81 and ABAQUS/EXPLICIT[9] are being employed to construct two dimensional (2D) and three

dimensional (3D) capabilities. In addition, the explicit finite difference program WONDY[7] is

being used to study one dimensional (ID) behavior and to develop advanced material models re-

lating to evolving damage, dispersion and viscoelasticity. Appendix A contains a brief description

of the reduced ID damage model with nonlinear compression, which has been programmed into

WONDY. This constitutive model is based upon the 2D continuum damage model developed in

[1-31.

In section 2, the inclusion of dispersion effects in the I D damage in the damage model is dis-

cussed. The use of higher derivatives in the constitutive modeling is explored as well as predictions

for composite plates subjected to underwater shock. The effects of viscoelasticity in the matrix of

the composite plate and its effect on dispersion is also addressed.

The application of the 2D continuum damage theory is discussed in section 3. A comparison

is made 'i PRONTO2D models to ID damage results from WONDY predictionls for the impact
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of a plexiglass flyer and graphite/peek plate - see [6] for the experinuental results. This is followed

by a coarse model of 2D impact using the PRONTO2D program.

In section 4, a 3D continuum damage theory is developed for thick laminated composites. The

3D formulation in part is an extension of the 2D transversely isotropic damage theory [1-3].

However, three dimensional considerations as well as the inefficiencies of trying to model indi-

vidual plies in a thick composite require a slightly different approach. In this section, a 3D formu-

lation is developed which applies the damage directly to the stresses as in [ 10-121, rather than the

compliances as is the case in the 2D theory.

ABAQUS/EXPLICIT [9] will in the future be the major developmental code for 2D and 3D

finite element analysis replacing PRONTO. Appendix B is a listing of the ABAQUS/EXPLICIT

user written subroutine for 2D continuum damage, and is similar to the 2D damage model pro-

grammed into PRONTO2D.

Finally in sections 5 and 6, a summary is given followed by some thoughts on future direc-

tions.
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2. DISPERSION EFFECTS IN A 1D DAMAGE MODEL

2.1 Background and general remarks

Composite materials, especially laminated plates and shells, comprise a very heterogeneous

media. The dynamic response of such materials can be broadly classified into one of two group-

ings [13]. If the wavelength of the loading and the response of the material is very long compared

with the scale of the inhomogeneity, thcn the rkeaterial response is governed by effective properties

of the equivalent homogenized media. However, if the composite structure is subjected to shock

loadings such as UNDEX or impact, then the wavelengths of the loading and the response of the

structure are much shorter. If this is the case, the characteristic dimensions of the hetergeneous me-

dia become much more important and the dynamics is greatly complicated. The interfaces be-

tween the material phases cause wave reflection and refraction. The energy is thus spread or

"dispersed" over many wavelengths. Mathematically this implies that the phase speed c and the

frequency eo are a function of the wavelength k [13-14) or:

w(k)
c (0)) - .(2.1 a)

In a non-dispersive media, the phase speed equals the wave speed and is a constant. The frequency

is then expressed as:

0) = Co k (2.2b)

Dispersion in composite materials can have two sources. We have already discussed the role

that geometry changes can play in a heterogeneous media. Another form of this phenomnenia has

as its origins the viscoelastic nature of the matrix of the composite. Separating the geometric and

the viscoelastic effects is, however, a very difficult undertaking. in [15] Sutherland discusses this

very problem.

For our purposes, however, it is not necessary in the numerical methods to completely separate

these two sources of dispersion. Rather what is needed is an approach that can accurately take into

account dispersion in general without requiring an excessive number of degrees of freedom and

associated computer costs.
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Before describing the specific details of our approach, we note that as discussed in [ 14], the

phenomenon of dispersion can be introduced directly into the numerical schemes such as finite dif-

ferences and finite element methods. For homogeneous media, numerical dispersion is not desired

since it represents additional error and inaccuracy in the response of tihe system being modeled.

However as indicated in [14,16-17], unwanted numerical dispersion is usually present in computer

models.

2.2 Development of an approach and application

For a heterogeneous media, the problemn encountered involves the inclusion of the dispersive

effects without the need to explicitly model all the fine details of the materials, which would re-

quire a very large number of degrees of freedom. One approach is to introduce higher derivatives

into the governing equations [17-18]. In [17], longitudinal waves in a plate are studied. The clas-

sical wave equation is:

07-1 2011U
Ct2  COt (2.2)

where u is the longitudinal displacement and c0 is the wave speed (non-dispersive). To include

dispersion effects, a fourth order partial differential equation is substituted in place of (2.2) that has

the form:

(_---C2 -2)-•" +K (O2k2 (02) () 2 k2  (02) = 0 (2.3)

where a, P, y and i are constants chosen to satisfy the governing dispersion equation.

An approach similar to [ 17] has been incorporated into the one dimensional program WONDY

in an attempt to include dispersion effects due to the heterogeneity of the composite material

[4,19]. For a ID case, the stress strain relationship can be written as:

S= Clic(2.4)

Next higher derivatives with respect to time arc introduced into eq. (2.4) in the form:

+)Y - 2 C1,e) 0 (2.5)4 + T



where X1, X2, YI and y2 are empirical constants to be determined by matching with experimental

results. Equation (2.5) is a relatively straight forward constitutive relation and its numerical inte-

gration within an explicit program such as WONDY would appear to be routine. In fact, the inte..

gration using Runge-Kutta methods of eq. (2.5) proved to be quite challenging, requiring even finer

time steps than needed by the central difference operator used in WONDY to integrate the equa-

tions of equilibrium. The use of explicit numerical integration for the constitutive relation eq. (2.5)

thus proved to be too expensive.

Another approach to the integration of eq. (2.5) is to express it in a convolution product form

such as:

= (GO®) (2.6)

where 0 represents the convolution. Toward this end, one can take the Laplace transform of

eq. (2.5) assuming zero initial conditions [ 19]. Doing this and then performing an inverse Laplace

transformation produces:

where H(t) is the Heaviside function, anrd G (t - t') is a function of I, t', l, -y2, X, and ,2 - see

[19]. Equation (2.7) has the general form of the hereditary integrals produced in viscoelasticity

theory [20]. The stress at time tn + can be expressed by:

+ e2 I(t ,14 + (L' (2 ,y -y - I) sin (I- cos +1

n+Ix le

I P
j=I

x Ye (2.8)

j='

where
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jht - E 2  os dt (2.9a)

1 2

J+ j+L tj

The variables Ie aid i1 in eqs. (2.9) can be explicitly integrated. The stress at tinme% .. 1, Y U,, + )

then becomes a matter of sumnfing the hereditary integrals over the previous time steps. This is

much more computationally efficient than the numerical integration of the differential equation

(2.5).

A great many WONDY computer runs simulating the plexiglass flyer and graphite/peek plate

impact experiments in [6] were performed. Equations (2.5), (2.7) - (2.9) were used to model the

dispersion effects in the graphite/peek plates. Several of the experiments were modeled in an at-

tempt to determine the enipircal constants Xl, IX2' 7t and Y' to sufficient accuracy for graphite/

peek material. An important criteria was the matching as close as possible to the experiments of

the plate backface particle velocity. Curve fitting to separate experiments produced too much scat-

ter in the enipimrcal consiams. This indicatedi that the onigin.. dispersion assumption in the form of

eq. (2.5) was not fully satisfactory.

In an attempt to improve the material model, the following viscoelastic type of constitutive law

was postulated to account for dispersion:

y (t) = H (t) fG (I - t') ý(t) dt (2.10)
0

where
-0.05(1) t

W() = 7C+ (l-y)Ct1 e cos(-)

This constiutive model yielded slightly better results than the previous one - eqs. (2.5) and (2.7) -

(2.9). In Table 2.1 the modeling of impact experiment no. 204 [6], which consisted of a plexiglass

flyer and a graphite/peek plate, with WONDY is described. See Figure 3.4 for a description of the

impact experiments. Figure 2.1 indicates the results. The predicted and experimental backface
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particle velocity of tile plate is shown in Figure-2.la. In general, the agreement is very good. with

some deteriorotion later in the simulation as might be expected. Figure 2. 1 b describes the predict-

ed V1 (thin thickness) damage in the plate. A value of 1 indicates total delamination.

Overall, the viscoelastic/dispersion constitutive law represented by eqs. (2.10) and (2.11) of-

fered some improvement over the original dispersion model expressed by eq. (2.5). Curve fitting

to separate experiments produced less scatter, but in general the results were not fully satisfactory

- the constitutive model was just not robust enough.

In reference [4], the authors programmed the viscoelastic constiutive law discussed in 115]

into WONDY, and modeled some of the impact experiments in [6] which consisted of plexiglass

flyers and graphite/peek plates. Their results appear to be very good with less scatter among the

numerical results for different flyer/plate thicknesses, initial velocities, etc. than was obtained in

this report. This approach [4] will probably be incorporated in fuiture 2D and 3D continuum dam-

age work.
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"* 3.45 mm PMMA flyer at 93 W/s onto 25.83 inmm Gr/PEEK

target (both flyer and target 102 mm diameter).

"* Mesh Size--215 zones in flyer and 1500 zones in target.

"* Geometric dispersion-dissipation constitutive law
0 = IH(t).fG(t- t)V (Xt')dt with G(t) = yC,, + (10-)C,,o-°t" Cos (t/t).

"* Coupling between dispersion and compressive nonlinearity
Y = (To + 6E) / (1 + 5E) where SE = Ax (Eixugongoi - ELInea) /ELln,,r.

"* Dispersion properties T=0.01 gsec, y-0.7

"* Coupling constant A=150.0

* Damage properties ii =2.5 psec, n1=2, m= .a wie,-e

GG = ,0 ( I -- V).

Table 2.1 Modeling of impact experiment no. 204 [6], plexiglass flyer and
graphite/peek plate.

8



FIGURE 2.1

SPECIMEN NO. 204--PREDICTIONS AND COMPARISON WITH EXPERIMENT
(PMMA AT 93 M/S ONTO GRAPHITE/PEEK)

A. Backfacc Particle Velocity-Prediction b. Predicted V, Damage
Compared with Experimental Data

120 Exi erimmiet

,100 Computed /

60

20

10 12 14 16 16 0.2 0.4 0.b 0.0

Time After Impact psec Dimensionless Plate Thickness
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2.3 Predictions for composite plates subjected to underwater shock

In this section, the WONDY program is employed to predict the response of composite graph-

ite/peek plates from 2 to 8 inches which are subjected to simulated near-field underwater explo-

sions. Dispersion and damage are included in the material models used in the WONDY computer

runs. The intent of these analyses is to assess the extent of spallation damage for various charge

weights and ranges, and to determine the approximate boundaries of incipient and complete spal-

lation. The history ot a TNT explosive impulse passing through a fixed spatial point can be ex-

pressed ws [21]:

p = po e (2.10)

where p. is the pressure and 0 the exponential decay constant. According to Aaron's law po and

0 can be determined using: WI31.13

PO = 0.5 19 ( W/1) (2.11)

010 4W 
I 1/3 -0.220 =; 0.925 x 04I3 ---

where p0 is given Jn kilobars, 0 is in seconds, R is the range in meters (n), and 1W' is the charge

mass in kilograms (kg). The values of W in eq. (2.11) will range from 5 kg to 30 kg, R? will vary

from .5 to 1.5 m (very close in), and the plates as previously stated will vary from 2 to 8 inches or

.0508 to .1016 meters.

For seawater, the following material properties (SI units)are employed in the modeling:

p = 1000kgtM 3

cw= 1500m (2.12)
S

sw "1.75

where p is the density and co is the bulk sound speed. The variable s comes from a linear shock

velocity U, to particle velocity Up relationship of the form [7,8]:

10



•~ ~ ~ ~ ~ ~~U C,+,, i ,P.• Ii .ll iLJii •;i,

u, = c+ s•Up(2,.13)

The material constants used for composite plates, which are assumed to be composed of graph-

ite fibers and a peek matrix (see [6] and Appendix A) are as follows:

bulk properties

p = 1579 k9 (2.14a)
m3_

co= 3000 -
S

El = 69.0 x 109pa (thru thickness)

E22= 13.45 x 109Pa

v1 2 =0.04, v 1 3 = 0.3

damage parameters (see [1-3])
1. = 1.0x 10- 6. N 1 = 1.0, (3- = 70x 106pa (2.14b)

and the dispersion parameters (using the early dispersion model - see eq. (2.5))

I= - , )2 = 5.0x10-6, , = - ,and Y2 = 0.81 (2.14c)

Figure 2.2 describes the WONDY model employed for the 2 inch thick plate and the fluid me-

dia. We note that the model for the fluid domain is only one half the thickness of the plate. In gen-

eral it is desirable to include as little of the fluid as possible since the pressure wave, which is

generated from a standoff position ranging from .5 to 1.5 meters in these analyses, must pass

through the fluid on its way to the solid. The bulk sound speed of the fluid cw is one half that of

the composite c0 . Thus the time of flight (=l/c) is roughly the same for both the fluid and the

composite media. In addition in these analyses, it was not necessary to employ silent boundary con-

ditions [7,8] at point A of the fluid boundary. The analyses were terminated (the damage was done

by the reflected tensile wave from the backface, point B, of the composite plate) before any spuri-

ous reflections from point A could reach the plate.

11
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One other important point to be brought up with respect to Figure 2.2 concerns the number of

finite difference zones used in the fluid and the composite plate. For the solid, 1000 zones were

typically used to capture the damage and to accurately model the shock wave as it moved through

the plate. This dicated the using of 500 zones in the fluid media. Employing zoning too coarse

(with respect to the solid) in the fluid would result in the shock wave not being accurately propa-

gated through the fluid. The selection of the time step 8t is based upon the smallest 1/c (I is the

length of a zone) in the model, which for the model described in Figure 2.2 will be determined by

the composite plate. Zoning too coarse in the fluid would not allow the shock wave to get across

a zone in one time step and cause a diffusion of the wave.

In general, the use of 1500 zones in the finite difference meshes for this fluid-structure inter-

action problem would seem to be excessive. Based on the discussion in section 3.2 this may very

well be the case. However, this point is not clear at this time and more modeling needs to be per-

formed to determine minimum levels of discretization required to accurately model both the shock

wave and the overall damage profile.

Finally in Figure 2.3, the results are shown for 2, 4 and 8 inch thich graphite/peek plates sub-

jected to underwater explosions. Based on these predictions, it appears that spallation is not a real

threat except for very close in explosions.

12



P = P0 e'Ve

A

7 FLUID MEDIA (500 zones)

1 inch (.0254 m)

fluid-structure interface

2 inch (.0508m) SOLID MEDIA

GRAPHITE/PEEK PLATE

(1000 zones)

B (backface of plate)

Free

FIGURE 2.2 WONDY model for composite plate subjected to underwater shock.
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FIGURE 2.3

EXPLOSION-INDUCED SPALLATION DAMAGE

CALCULATIONS IN A CHARGE WEIGHT VS CHARGE RANGE SPACE
FOR TNT IN WATER OVER GRAPHITE/PEEK

30 COMPLETE

O 2INCII PLATE SPALLATIONLINES

20 L 4.1NCl PLATIC DAMAGE ZON E

0-"PLA,.INCIPENT2
PSTALLATION

:~DEGREE OF LINES /
Sis DAMAG;E1

10 PLATE
c£0 @ DAMAGES• ~ZONE_-

70 MPA=I0,150 PSI LINE
0 --- _ __------___------___ ___

0.0 0.5 1.0 1.5
RANGE OF CHARGE (METERS)
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3. FURTHER APPLICATIONS OF THE 2D TRANSVERSELY ISOTROPIC

CONTINUUM DAMAGE MODEL

3.1 Background

Details of the 2D transversely isotropic continuum damage model developed at NRL are con-

tained in references [1-3]. Also, section 4.1 of this report briefly discusses some of the salient fea-

tures of the 2D theory in developing a viable 3D continuum damage approach.

Basically our efforts to run detailed 2D continuum damage models with PRONTO2D have
been hindered recently. We have begun the transition of the 2D and future 3D damage work away
from PRONTO to the program ABAQUS/EXPLICIT [9]. This latter explicit finite element pro-
gram has been developed by the architects of PRONTO. ABAQUS/EXPLICIT thus represents

second generation software that possesses good pre- and post-processing capabilities, and is well

documented and supported.

Another event that has hindered recent efforts to run detailed 2D damage models has been the

retirement of the NRL CRAY-XMP, which was a COS machine. PRONTO2D was run in the past
on this COS machine for larger jobs. A CRAY-EL is now available at NRL with the UNICOS op-

erating system, but our development version of PRONTO2D could not be converted due to the

COS libraries which are linked to the source code. Rather than trying to update a new UNICOS
version of PRONTO2D, a decision was made to go completely to ABAQUS/EXPLICIT since it
would be employed to develop 3D continuum damage capabilities. Appendix B is a listing of a
user written subroutine for the current 2D damage theory being implemented into ABAQUS/EX-

PLICIT.

In the remainder of this section, we discuss PRONTO2D analyses which were run on a Micro-

Vax, and are therefore limited in the fineness of the meshes and the number of elements allowed.

15



3.2 PRONTO2D comparisons to experimental and WONDY results

The intent of this section is to apply the 2D continuum damage theory of [1-3], which has been

programmed into PRONTO2D, to a one dimensional (ID) impact problem that has been studied

experimentally in [6] and with WONDY - see Figure 2.1 for results. As discussed in section 2.1

and Appendix A, the WONDY program is applicable to one dimensional situations, and contains

both a reduced ID damage model and a capability to account for dispersion/viscoelastic effects.

We address two questions in this section. The first concerns the effects of dispersion/vis-

coelasticity in the analyses, which is not explicitly included in the PRONTO2D model but is pro-

grammed into WONDY. The second question relates to the number of finite elements neededwith

PRONTO2D (or ABAQUS/EXPLICIT) in the thru thickness direction to accurately predict the

damage profile and the shock wave. Previous WONDY finite differnce runs had seemed to indi-

cate that hundreds of finite difference zones were necessary to accurately simulate the shock wave

thru the thickness of the plate. For instance, the WONDY results of Figure 2.1 employed 1500

zones thru the composite plate. For 2D and especially 3D problems, this would tranlate to hun-

dreds of finite elements thru the thickness, and is completely impractical. Due to aspect ratio con-

siderations, tens of thousands of elements would be required to model just a 2D plate an,' flyer.

With this in mind, we therefore focus upon the PRONTO2D modeling of impact experiment

no. 204 in reference [6]. Table 2.1 and Figure 2.1 describe the WONDY modeling and results

along with the experimental results for this impact problem, which consists of a plexiglass(PMMA)

flyer and a graphite/peek plate of the same diameter. Because both the flyer and the plate are the

same diameter, the early time response of the center of the plate can be approximated using a one

dimensional model. Once bending and tranverse shear waves reach the center portion of the plate,

this assumption is of course no longer valid. Table 3.1 indicates the material constants for the

PMMA flyer along with the material and damage variables employed for the graphite/peek plate.

(See also Figure 3.5, which indicates the material constants used in a typical PRONTO2D run. For

16



a further explaination of the variables used in the 2D continuum damage model programmed into

PRONTO2D, refer to [1-3,8]). Two analyses are performed. Model A employs 100 elements thru

the plexiglass flyer and 400 elements thru the graphite/peek plate. Model B is coarser and uses a

quarter the number of elements, or 25 thru the flyer and 100 thru the composite plate. Also note

that model B represents a viable mesh spacing in the thickness direction that could be extended for

a true 2D model of this problem, including bending and shear effects that would arise later in the

analysis. (See section 3.3 for a coarse 2D simulation of this problem with PRONTO2D.)

The PRONTO2D damage predictions for models A and B are indicated in Figures 3.2.1 and

3.2.2, respectively. Delamination damage in the plate is indicated in both figures. Comparing Fig-

ure 2.1 to these results, we see that model B (coarse mesh) produceJ damage predictions reason-

ably close to the very refined WONDY model (1500 zones). Model A with 400 elements thru the

thickness of the plate was more ragged in the description of the total damage (V l= 1) than model B.

In general, the delamination results of models A and P• indicate that the coarser mesh B corn-i

pared better to the very refined WONDY model. At this point, it is thought that the coarser finite

element (model B) may have compensated somewhat for the dispersion/viscoelasticity effects

which are not included in PRONTO2D. (See also the comments concerning Figures 3.3.2 and

3.3.3). This is only speculation using at this point in time the WONDY results as the standard. In

the future, comparison will be made to the data from ultrasound tests [6], and the forthcoming dis-

section of the plates.

In Figure 3.3.1, the predicted backface velocity of the plate from the coarse mesh, model B, is

indicated. Comparing to the experimental results which are shown in Figure 2.1, one sees a good

correlation. The peaks denoted by the points A, B, C, and D in Figure 3.3.1 match up very well

with the experimental results. The width of the initial shock front, however, is narrower for the

coarse PRONTO2D model and model B does not "shock tip" as quickly as the experimental curve.

Points E, F and G in Figure 3.3.1 also do not match up well with Figure 2.1. The predicted back-

face velocity is somewhat out of phase. Overall, however, the results of Figure 3.3.1 ,re very en-

couraging for our 2D (and 3D - section 4) continuum damage theories. The inclusion of viscoelas-
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tic/dispersion capabilities should greatly assist in the closing of the gap between the experimental

and predicted results, and offer a real hope in the modeling of 2D and 3D impact problems.

In Figure 3.3.2, the predicted backface velocity of the composite plate is shown for the fine

mesh, model a (400elements thru the thickness). Figure 3.3.3 displays the results from both model

A and model B (coarse mesh). Comparing to the experimental results in Figure 2.1, we see that

the fine mesh A "shocks up" quicker than mesh B. The initial shock front is also wider, and thus

closer to the experimental results. However, past approximately 11 microseconds, the fine mesh

predictions deteriorate and eventually around 18 microseconds severe oscillations are evident. (It

is noted that with 400 elements thru the thickness of the plate, mesh A requires time steps approx-

imately 1/4 those of mesh B to maintain stability based on the Courant criteria [8,9,23). This can

lead to accumulated error later in the time history, but should not cause such instability in general.)

Artificial viscosity [8] is contained in PRONTO2D to prevent high velocity gradients from

collapsing an element before it can respond, and to help prevent oscillations or "ringing" such as

seen in Figures 3.3.2 and 3.3.3. The following values for articfical viscosity were used in obtaining

the results shown in Figure 3.3.2:

bi = 0.1 and b2 = 2.

where b I is the linear bulk viscosity coefficient and b2 is the quadratic viscosity coefficient. As

discussed in [8], bi helps to dissipate truncation frequency oscillations while b2 is designed to

smear a shock wave across several elements. In an attempt to decrease the oscillations, b, was

next increased to .2, while b2 was unchanged at 2. This choice "'f parameters produced even more

severe oscillations in the predicted backface velocity of the plate. At this point, a final ni was

made using the PRONTO2D default values b = 0-06 and b2 = 1.2. Figure 3.3.4 describes the

results for model A (b1 = 0.06 and b2 = 1,2) and model B which were obtained from Figure

3.3.1. The oscillations in the time history for the fine mesh , model A, have completely disap-

peared. It is evident that the later time results for the fine mesh, model A, are sensitive to the arti-

cial viscosity parameters b, and 12. Reference [23] contains a more thorough discussion of

artificial viscosity. However at this time, we do not fully understand why the numerical oscillations
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occurred for higher values of artificial viscosity.

The future inclusion of viscoelasticity/dispersion (see (2) in section 6, Future Directions) in

the 2D and 3D continuum damage theories will provide additional damping that should help pre-

vent such oscillations as in Figures 3.3.2 and 3.3.3. We note that the WONDY results, with up to

1500 zones in the composite plate, included dispersion in the formulation and this along with arti-

ficial viscosity helped to prevent the oscillations seen in some of the PRONTO2D models.

Overall, we conclude in this section that viscoelasticity/dispersion may have an important in-

fluence upon both the final daunage profile, and in the capturing of the shock wave as it propagates

thrn the thickness of the composite plates. The approach discussed in [4] will be extended to 2D

and 3D situations. With regards to the number of elements thru the thickness, it appears that a min-

imnum of 100 may be required, but hundreds of elements are probably not necessary to achieve suf-

ficient accuracy. Certainly more analyses still need to be performed before more definitive

conclusions can be made. However, the results in this section are none the less quite encouraging.
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y

PMMA FLYER - intial vel - 93m/s

3.4 mm u,=O all nodes Model A - 100 elements

Model B - 25 elements

CONTACT SURFACES (x=O)

""X

GRAPHITE/PEEK PLATE

1x=O all nodes Model A - 400 elements

Model B - 100 elements

25.83 mm

FIGURE 3.1 - PRONTO2D model of ID impact of PMMA flyer and
graphite/peek plate (specimen no. 204 in [61, see

Figure 2.1 also).
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TABLE 3.1 - Material and damage variables used for thle PMMA flyer and tie
graphite/peek plate, in the PRONTO analyses - SI units.

E (modulus) 9.595 X109Pa
v (Poisson's ratio) = .396

p (density) = 1185 kg/n 3

Equation of State - Linear Us- Up Hugoniot form [8]

Us--Co+s Up

Us= shock wave velocity, Up = particle velocity

CO = 2590. s = 1.52 r (Gruneisen ratio) = .97

GRAPH3'TEPEEK-PLATE

Material Properties

p (density) = 1579 kg/in 3

E2. (ianar mmitulus) = 69. X10 9 Pa

E01; (thin thickness modulus) = 13.45 X 109 Pa

Go2 (transverse shear modulus) = 7. X10 9 Pa

vt, (transverse plane) = .04

V,3 (inplane) = .30

Damage Parameters

o. = Cc-t = 0.75, tc4 = 0.95

1= 2. x 10-,, 2

112 = = 1.4 x 10-3, 12 = is 1

OGI0 = 70. X 106 Pa tGIO = 70. x 106Pa

TO -0 = 0.5, 10= 0.5

=Gso 170. x 106Pa TGS= 340. x l06 Pa

T 0. = 1., PGS1 = 1.

Ultimate strain allowed

CULT = 0.015
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0.0

DAMAGE 0.6

0.4 BACKIFACE OF PLATE

0 .2 

ý
0.2 0.4 0.6 0.0 1

FIGURE 3.2.1 Model A, fine PRONTO2Di mesh results.

1

0.0

DAMAGE
0.6

0.4 BACKFACE OF PLATE

0.2

0.2 0.4 0.6 0.8 1

FIGURE 3.2.2 Model B, coarse PRONTO2D mesh results.
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100 A

00

Backface Velocity 60

of Plate 40

20

S 1 12 14 16 10 20

TIME IN MICROSECONDS

FIGURE 3.3.1 Predicted backface velocity of the plate for model B,

coarse mesh

100 lo[ A (•, t>

0 10 12 1,4 16 10 20o

TIME IN MICROSECONDS

FIGURE 3.3.2 Predicted backface velocity of the plate for model A,

fine mesh
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-- Model A - 400 elements thru thickness, b 1=.1, b2=2.

Model B - 100 elements thru thickness, b1 :=1, b2=2.

100

Backface Velocity 60

of Plate 40

20

10 12 14 16 18 20

Time in microseconds

FIGURE 3.3.3 Predicted backfece velocity of the plate for models A and
B. Note oscillations in model A.

- Model A - 400 elements thru thickness, bl=.06, b2=1.2

Model B - 100 elements thru thickness, bj=.1, b2=2.

100

Backface Velocity 60

of Plate 40 
.

20 ]
0

10 12 14 16 18 20

Time in microseconds

FIGURE 3.3.4 Predicted backface velocity of the plate for models A and
B. No oscillations in model A.
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3.3 Coarse model of 2D impact problem - circular PMMA flyer and graphite/

peek plate

Figure 3.4 describes the impact experiments that were conducted in [6], which consisted of

axisymmetxc PMMA (plexiglass) flyers impacting axisymmetric composite plates composed of

either graphite/peek or graphite/epoxy. One dimensional models of experiment 204 are discussed

in previous sections. See Table 2.1 and Figure 2.1 for WONDY model results, and Figures 3.3.1

and 3.3.4 for the PRONTO2D one dimensional simulation.

In this section, we will discuss the 2D modeling of the impact experiment using PRONTO2D

and the 2D continuum damage model developed in [ 1-3]. In general, true 2D effects such as bend-

ing would become more prevailent at later time during the experiment and simulation. Early time

predictions for the center of the plate would be dominated by one dimensional response - thus the

use of one dimensional WONDY and PRONTO2D models in section 3.2. Figure 3.5 is a listing of

the formatted PRONTO2D input. (Note nodal coordinates, element connectivity and boundary

condition data are given in another input file and is unformatted for PRONTO2D). Material I in

Figure 3.5 represents the graphite/peek plate, while material 2 is the PMMA flyer. The material

and damage variables [1-3] for the graphite/peek plate are listed in Figure 3.5, and are the same as

contained in Table 3.1. A very coarse PRONTO2D two dimensional model is indicated in Figure

3.6 in which 10 to 20 elements have been used thru the thickness of the flyer and composite plate.

The PMMA flyer contains a total of 400 elements, while the graphite/peek composite plate is dis-

cretized with 800 elements.

In Figure 3.7, the predicted backface velocity of the centerline of the plate is plotted as a fupc-

tion of time. The experimentally measured plate backface velocity is given in Figure 2. 1, along

with WONDY predictions. In addition, PRONTO2D results for a ID simulation using 100 and

400 elements thru the thickness of the plate are given in Figures 3.3.1 and 3.3.4. As one might ex-

pect with such a coarse 2D discretization, the PRONTO2D results of Figure 3.7 represent only a

crude approximation. Figure 3.8 describes the PRONTO2D predicted thru thickness damage in the

graphite/peek plate. Compare this result to Figure 2.1, which is from WONDY, and also to Figures
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3.2.1 and 3.2.2 which represent PRONTO2D one dimensional models with 400 and 100 elements

thru the thickness of the plate. In general, the damage results in Figure 3.8 are very approximate

as expected.

Finally, it may perhaps appear odd to refer to Figure 3.6, in which 1200 elements (800 in the

plate) have been employed, as a coarse mesh. However, one is trying to simulate impact experi-

ments in very hetergeneous composite materials. Many degrees of freedom are required to accu-

rately capture the shock wave as it progresses thru the media. Recall in section 3.2, model B (one

dimensional simulation) with 100 PRONTO2D elements thru the thickness compared well to the

early time experimental results for the backface velocity of the plate. More will be said in section

5, Summary and Future Directions, concerning discretization and also the inclusion of viscoelas-

ticity/dispersion effects.
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PMMA Graphite/Epoxy

Flyer Target VISAR

Velocity Interferometer for Real-time

Particle Velocity Measurements and

Spallation Signals

Correlate with Response Models

• r\J'i/- \j

FIGURE 3.4 Impact tests conducted in [6].
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LAST PROBLEM4 -flIA FLYER,GR-PEEK PL. -SHOT 3357-1200EL.

PLANE STRAIN
BULK VISCOSITY-. 1.2.

.ATERIAL,1,TRANS ISO W~ OAN, 1579.

PLANAR MODULUS=69 .E9

THRIJ MODULUSý13 .45E9

NUTRAflSPL".04

rNUINPLANE-..'

SHEAF(TRANS.7 . E9

Al..75

A2. .75

A3...75

Ad-. 99

ET=2 . E-06

NI=2.

ET2-1 .4E-0'

N2-1

VISIGGOx'0.E6

VITAUG0,ý .0.E6

VlIPHIGO'..5

VLPI4IG-.*5

V2SIGGO-170 .E6

V2TAUG0x340 .E6
V2 PHIIGO.~.
VEPHIG-1.
EULT- .015

END

MATERIAL, 2, EP HYDRODYNAMIC, 1185.

YOUNGS MODULUS.9 .59bE9

POXSONS RATIO-..396
YIELD STRESSclO.EIO
IARDEN!% OOG JS9. 95

BETA-i.

PRESSURE CUTOFF--i .EB

END

EQUATION OF STATE 2 - MG US-UP

C0.2590, ,S&l.52,GAKMA=.97

END

NO DISPLACEMENTX. 1
INI? VEL MAT.2,O.. -93.

CONTACT SURFACE, 100,200, .1,.5

TERMINATION TIME. 25.E-6

OUTPUT TIME,i.E-7

PLOT TIME.1.E-7

PLOT NODAL-VELOCITY

PLOT ELEMENT, STRESS

PLOT STATE.V1,V2,DOUT

DEAT1I,l,DOUTABS, .99, .1

EXIT

SEOB I

FIGURE 3.5 PRONT02D input for coarse model..
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PATPAN 25-3

FLYER

PLATE

FLYER -. 102 meters radius, .00345 meters thick, I10X40 elements

Plate -. 102 meters radius, .02583 meters thick, 20X40 elements

FIGURE 3.6 Coarse PRONT02D model of' plexi-glass flyer
and graphite/peek plate, impact vel. 93 in/s
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60

Backface Velocity 40

of Plate
20

-6 0.00001 0.000015 0.00002 0.000025
5. 10

TIME IN MICROSECONDS (after impact)

FIGURE 3.7 Centerline, backface particle velocity for the coarse PRONTO
mesh in Fig. 3.6.

0.6

Damage 0.6

0.4 Backface of the plate

0.2

0 0.2 0.4 0.6 0.8 1

TIME IN MICROSECONDS (after impact)

FIGURE 3.8 Thru thickness centerline damage prediction for the coarse
PRONTO mesh in Fig. 3.6.
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4. DEVELOPMENT OF A 3D CONTINUUM DAMAGE MODEL

4.1 General remarks

The development of a robust three dimensional (3D) continuum damage model for transient

analysis of thick composites has proven to be a formidable task. A simple extension to the 2D the-

ory, which is discussed in [1-3], is not viable. In what follows, a somewhat different approach for

3D continuum damage is developed.

Essentially, the 2D continuum damage model assumes transverse isotropy in the 1-2 plane as

indicated in Figure 4.1. Delamination damage, representing a network of matrix cracking aligned

in the 1-2 plane with normals in the 3 direction, is denoted by V3 (V, in [1-3]) and depicted in Fig-

ure 4.2. Inplane matrix cracks, which may traverse or lie between reinforcing fibers but not break

fibers, are indicated in Figure 4.3 and referred to as V, damage in [1-3]. In this approach, damage

effects were tracked and applied to the engineering moduli, shear moduli, and Poisson's ratios.

Specifically for the coordinate system indicated in Figure 4.1, the following damage dependencies

were assumed:

E 33 - (1-V=)E33

I I = E22 1 -(1-i )Ei

G = ( _- V2) ( l-- t2 2) G3 1  (4.1)

31= (I1-V2) (1-a3V2) -O0

~31 3= S3

'12 = (1-_a 4 Vs)412

where the superscript "0" denotes undamaged properties and the fractions 0 < ,i < 1, i =1, 4 are

included to prevent a complete loss of material integrity as the saturation state V -4 1 is reached.

The assumption of transverse isotropy in the 2D formulation represents a reasonable approx-

imation that allows the thin thickness direction to be more easily discretized. This approximation

eliminates the requirement of tracking each individual ply and the various compliances associated
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with them. It represents essentially a homogenization of the laminate. Note, however, a large num-

ber of elements are still required in the the 3 direction to accurately model transient thiu thickness

effects - see section 3.2.

In a 3D model of a laminated composite, the transverse isotropy assumption is no longer valid.

Total damage, which will be represented by the vector D. can be expressed by:

D = Diget +D2_2+D3C3 (4.2)

where Ci are unit base vectors and Di are individual components of damage with normals aligned

in the ri direction.

A direct extension of the 2D damage model to 3D seems quite logical at first glance.

However, this approach is very inefficient because it would necessitate the tracking of each indi-

vidual ply and its compliances.

An .Itern-a.te -approach to !he modeling of 3D da•mage is to t..k, t,, amage and apply itto .th

stresses [10-12] as opposed to the compliances, as is done in the 2D model. In a one dimensional

case, the effective stress 6 with damage present can be related to the stress of the undamaged ma-

terial by:

6= YxA/A=a - /(I-D) (4.3)
A-A

where D -A (4.4)
A

is the scalar damage, and A is the original area, and A is the effective area due to material damage.

From eq. (4.4), D is interpreted as the relative reduction in area caused by damage due to micro-

cracking. For general anisotropic damage in three dimensions, the effective stress d can be ex-

pressed in a tensorial form as:

i = M(_D) g (4.5)

where M is the second order material damage tensor and D is the damage vector defined by eq.

(4.2). In references [10-12], the following form of t4 is proposed to account for anisotropic mate-

rial damage in the principal coordinate system:
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(I/(I -a01 D)) 0 0 0 0 0

0 (1/(1 -x 2D 2)) 0 0 0 0

0 0 (1/(1 -- 0 3D 3 )) 0 0 0

0 0 0 1 0 0
(I - xD1) (1- a 2D2)

0 0 0 0 1 0
f(l- -a 1 DI) (1- 0a3D 3)

0 0 0 0 0 1
(1 -a 2D 2) (1- -a 3D 3)

(4.6)

where, as in the 2D damage theory, the fractions 0 < ai < I, i -l,2,3 have been added to prevent a

complete loss of material integrity as the individual components of damage D, go to 1.

For individual plies, eqs. (4.5) and (4.6) can be easily applied, since the principal directions

are in the 1-2 plane (see Figure 4.1) and are parallel and perpendicular to it. Then the stress tensor

-o can be transformed to the global 1-2 axes. In this work, we will apply eqs. (4.5) and (4.6) to

groups of plies, and assume the additional approximation that the global 1-2 axes represent the

principal axes (see comments at the end of this section).

For linear elasticity, the relationship between the stress and the strain tensors can be written as:

g = ff (4.7)

where C is the constitutive tensor and _ is the strain. In the case of an orthotropic lamina in which

there is no interaction between the shear stress, eq. (4.7) is of the form [22]:
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011 C11  C12  C13  0 0 0 t11

02 22 C 2 1  C 2 2  C 2 3  0 0 0 E22

933 = C 3 1  C 3 2  C3 3  0 0 0 F33

a'12 0 0 0 C 4 4  0 0 C33

013 0 0 0 0 C55  013

023 0 0 0 0 0 223

(4.8)

where 1,2, and 3 are the principal axes. In terms of the engineering constants, the components of

the constitutive tensor _C are:

C11 = (1-V 23V23)/(E 2E3 P)

C1 2 = (V 12 +V 3 2V 13 ) / (EIE 3 P) = C 2 1

C13 = (v13 +v 12 v23)/(EE2j2) = C31

C 22 = (l-V 1 3V 3 1)/(EIE 3 [) (4.9)

C2 3 = (v 2 3 +V 2 1V1 3)/(EIE2 3) = C 32

C3= (1-V 1 2V21)/(EIE 213)

C = G1 2, C55 = G13, C66 =G23

and

= (1 -V2V21 - V23V32 - V31V13- 2v 21V3 2V13 ) / (EIE 2E3 )

where vi, Ei and G, represent the various Poisson ratios, the engineering and shear moduli. In

addition, thcre is also the following relationship:

v.i/Ei = V.../E (4.10)
ji j

where the summation convention is suspended.
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Equations (4.8) and (4.9) can be constructed for each individual ply. However as discussed

previously, it is not our intent to track the damage in each ply but rather in groups of plies. This

latter approach allows mnore flexibility in the discretization of the thiru thickness direction (3 axis).

For 3D and 2D solid finite element, explicit transient analysis, such as the programs PRONTO2D

[8] and ABAQUS/EXPLICIT [9], employ linear solid elements with reduced or one point

integration. With this in mind, equations (4.7) - (4.10) can be applied to groups of plies and their

effect incorporated into a single element. Within a linear element due to one point integration, the

stress and strain do not vary in the thru thickness direction (or in the other two directions). Thus,

eq. (4.7) for a group of N plies can be written as:
N

g = iF: (4.11)

In lumping together groups of plies with orientations a,b,c,d for instance, we appear to be restrict-

ing the number of element allowed in the 3 direction. As discussed in sections 2 of this report, in

many insiances over I00 elements thru the ihickness may be. required to track the wave nature of

the response. If there are only 10 groups of plies with orientations of a,b,c.d, with this approach

only 40 elements in the 3 direction could be allowed before individual plies would have to be mod-

eled with more than one element. This approach would be very difficult particularly with respect

to pre-processing. To overcome thus defficiency, an additional approximattion is introduced,

which assumes each group of plies can be broken down into subgroups with exactly the saune group

of plies as the original group a,b,c,d, but with scaled thicknesses. Thus, if as in this case, there are

10 groups of plies with orientations of a,b,c,d and 100 elements thru the thickness are required, il

is assumed that there are 100 groups of plies (a,bjd) with thickness 1/10 of the original layup.

This latter homogenization approximation appears to be a reasonable compromise to the modeling

of each individual ply, or the possibility of requiring more than one element per ply should addi-

tional elements be necessary in the 3 direction.

We return now to equations (4.5) and (4.6). The strain energy W of an undamaged material

can be expressed as:
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W = E (4.12)

Using eq. (4.7), (4.12) becomes:

W l (4.13a)

in terms of the strain tensor g or

W = 1T•'Iq (4.13b)

with respect to the stress. The strain energy WD for a damnaged material is expressed as [10):

= CT I (4.14)

Using eq. (4.5) produces:

WD = lr(MT-C-M)q

or

where

inveniing eq. (4. 5) produces the oamaged constitutive tensor:

S= M-Ir (Mr)-l (4.16)
Because of eq (4.6), Y is assumed to be a diagonal matrix, and thus its inverse is easy to obtain.

Before closing this section, we return to eqs. (4.5) and (4.6). The H matrix is assumed to be

diagonal, and also referenced to the principal coordinate system. In general for laminated compos-

ites, the 1 and 2 directions will not correspond to the principal directions This assumption, how-

ever, can be partially rectified by adjusting the thresholds (see section 4.2) for damage to more

accurately reflect the grouping of the individual plies within a single finite element.

36



4.2 Details of the damage model

Having postulated an approach to model 3D continuum damage in a thick composite, we next

describe the specific details of the damuage model. The intended application is for composite ma-

terials which usually contain a great number of imperfection sites from which cracks can grow-

Thus, the nucleation of new cracks is not addressed. Rather, the focus is on the growth and evolu-

tion of damage.

Recall from eq. (4.2) that the damage L) is assumed to be a vector with components Di in the

1, 2, and 3 directions. As in the 2D model [1-3], the evolution of the individual components of

damage are assumed to be governed by a threshold in the form:

Fi (,fi(Dj)) •0 for no damage growth (4.17)

>0 for damage growth

where (i.i)=1.2,3 and there is no sum on i: F. are scalar threshold functions; (Y is the current stress

tensor; and fi is an array of current threshold parameters which are functions of Dj, the damage

component. F, is assumed, aiz in [1-3], to be of the Mohr-Couloinb type and to be dependent upon

the stress measures ot, and 't (tension and shear) as follows:

, = ( +( + ) - (f2)/f 
( ,.18)

In eq. (4.18) the parameters are related to specific growth threshold strengths a Gi and TGP, and the

Coulomb friction tangent ,Gi as:

C%. ` fAi-f2i

"TGi = f 3i( (fl /f 2i) 2 - 1) 1/2 (4.19)

Gi= f 3if2i

The tension and shear growth thresholds as well as the Coulomb friction tangent in eqs. (4.19) are

assumed to be fimciions of the damage Di. The threshold surface (F = O)defined by eq. (4.18) is
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shown in Figure 4.4 along with the various parameters. Note that in this figure d is the shortest

distance fron an external state (ar, Tr) to the threshold surface.

Using eqs (4.18) and (4.19), we further develop the details for the components of damage D,

and its evolution. For D3 type of damage, which corresponds to delamination, the stress measures.

O and T, aren postulated to be of the form:

r3 0 0 33

T= (C3 1 + 2 ) 1/2  (4.20)

The growth threshold stresses and the Coulomb friction tangent in eqs. (4.19) are then taken to be:

oYG3 = (I - D )3 (G30

G3 (1-D 2)tG (4.21)

WG3 = G3O+D(CG30~ 3O'PG3 !- 'PoG0 +3D ('TG31 -- (G30)

where the "0" subscript denotes the initial undamaged properties. Note that for caG 3 and TG3 all

resistance to damage is lost as D 3 goes to 1; and the Coulomb friction tangent P0G1 can vary lin-

early with D2 as the damage progresses.

From eqs. (4.18), (4.19), the variables f2 .•, f1 3 and f33 are:1 23
f23 = 2 ,2 a G3

~GI G 3 J

f 13 = 'G3 +f23 (4.22)

f33 =/f2(P3

To complete the continuum damage formulation for D3 damage, evolution equations are re-

quired. From [1-2], the following relationship is postulated for D3 (delamination) damage:
dD3  _d = F3 (d 3' D3) (4.23)

where d3 is the shortest distance in the a,, -t stress space (eq. (4.20)) - see Figure 4.4 for the thresh-
dD3

old surface F = 0. For d3 = 0, F = 0 and d = 0 for all stress points interior or on the thresh-
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old surface (F = 0). The specific form of eq. (4.23) employed in [1-2] and which will be used

here is expressed as:

dD3  n(
= (d3/ )/ (3 (1 - D) (4.24)

where n3 is a positive power exponent for d3/0.3 (a dimensionless stress distance), 113 is a time

constant governing the rate, and the term 1 / (1 - D2) causes an acceleration of the damage to

complete delamination as D3 goes to 1.

Next we consider D1 and D2 type of damage, which relate to matrix cracking. The discussion

will focus on DI, but D 2 type of damage will be assumed to be of the same form. The substituion

of 2 for the index 1 in the equations to follow will yield the D 2 formulation. For D I type of dam-

age, the stress measures crt and xr1 required for eqs. (4.18) and (4.19) are postulated to be of the

form:

OtI(T If t l -" 1 1l

31/2 (4.25)

EAuations (4.25) are used in conjunction with eqs. (4.18) and (4.19). The form of the growth

threshold stresses is not of the same form zs D3 damage, which is given by eq. (4.19). D, (and

also D2 ) damage consists of an ever denser network of cracks which tend to saturate. There is no
acceleration to a catastrophic failure as in the case of D3 damage which represents delamination.

Saturation can be forced through the growth thresholds as done in [ 1-2]:

=G= OGlF/(I - D2)

G "(Gl I( - D2) (4.26)

while Coulomb friction tangent is taken to be

+PGI D 2GlO+Di(PGH-GI) (4.27)

In eq. (4.26) it is seen that as D1 goes to 1 drmnage becomes more difficult since the growth thresh-

olds (YG and cGI greatly increase. Reference [1] also offers another form for the threshold func-

tions - see that discussion for further details.
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For D 1 (and D2 ) damage, the final ingredient required is the specific form of the rate evolution

equation which is described by eq. (4.23). Since there is no acceleration to a catastropic failure, as

in the case for D3 damage, a viable form is taken to be:

dD = (d1  l (4.28)

where as in eq. (4.24) 71, is a time constant, d, is normalized with the virgin growth threshold

stress GGo1, and n is a positive term for the dimensionless stress distance.

Another mode of continuum damage is the breakage of the reinforcing fibers. To account for

this effect, a simple maximum strain criteria is used in the 3D model. The D1, D 2 and D 3 forms

of damage cause softening of the composite response and thus directly influence this maximum

strain criteria.

In closing this section, it is noted that at the time this report is being written, the 3D continuum

damage model is being programmed as a user written subroutine for ABAQUS/EXPLICIT.
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FIGURE 4.1. Portion of a 0 deg, +- and -60 deg ply laylip.

FIGURE 4.2 V3 delamination damage.
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FIGURE 4.3 Vs inplane matrix damage.
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FIGURE 4.4 Threshold surface for the onset of damage.
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5. SUMMARY AND CONCLUSIONS

The results of this report document progress made in predicting the early time response of

thick composite plates subjected to multi-dimensional shock loading. In general, numerical pre-

dictions compare very well to available experimental data. Overall, the results of this report are

very encouraging for the ID, 2D and 3D continuum damage theories developed at NRL for the ev-

olution of damage in thick composite shell structures.

Dispersion effects in a ID damage model are discussed in section 2. An approach is developed

that employs higher order derivatives in the constitutive relations. This is shown to be equivalent

to a viscoelastic theory. This approach has been programmed into the one dimensional finite dif-

ference program WONDY. Comparisons to experimental results were good. However, this ap-

proach required too much curve fitting of data from individual experiments and was not robust

enough. The use of a more straightforward viscoelasticty theory [15] in WONDY along with the

1D damage theory proved to be superior and is documented in 14].

In section 2.3, using the WONDY program with dispersion and damage included, ID damage

predictions are made for thick composite plates subjected to underwater shock. Based on these re-

sults, it appears that spallation is not a real threat except for very close in explosions.

In section 3, PRONTO2D finite element models containing the 2D transversely isotropic con-

tinuum damage theory are compared to experimental and WONDY results for the impact of plex-

iglass flyers onto graphite/peek plates. Plate backface velocity predictions from the ID

PRONTO2D models compared very well to experimental measurements [6] and very finely dis-

cretized WONDY models which also contained viscoelasticty/dispersion. One hundred 4 node

solid elements appear to be sufficient to capture the magnitude and the general shape of the shock

wave. The inclusion into the 2D continuum damage theory of viscoelasticty as used in [4] as well

as nonlinear elasticity in the thru thickness direction, should improve these results further - see sec-

tion 6 item (2) for additional comments.

A new 3D continuum damage theory is developed in section 4 for thick laminated composite
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plates. The 3D theory represents, in part, an extension of the 2D transversely isotropic damage the-

ory contained in [1-3]. However, three dimensional considerations as well as the inefficiencies of

modeling irndividual plies in a thick comrosite re.uired a slightly different approach. A 3D for-

mulation is developed which applies the damage vector D directly to the stresses, rather than the

compliances as in the 2D theory. In general, this new 3D damage theory appears to be quite. prom-

ising, offering real potential for more efficient and accurate modeling of thick laminated composite

plates subjected to very transient loadings, such as impact and underwater shock.
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6. FUTURE DIRECTIONS

Based on the success of our efforts at NRL to date concerning the development of numerical

capabilities for predicting the response of thick composite shells subjected to very transient load-

ings, we plan to pursue the following directions.

(1) The 2D transversely isotropic continuum damage theory [1-3] will be implemented into

ABAQUS/EXPLICIT. This capability will be used to model several of the experimental

impact problems discussed in [6] in which plexiglass flyers were fired at thick graphite/

peek plates and graphite/epoxy plates. Up to 100 elements thru the thickness will be em-

ployed. True 2D problems in which the diameter of the flyer is smaller thin the plate

(edge effects) as well as bending and transverse shear effects (later time) will be investi-

gated. Direct comparisons to the experimental data in [6] will be made, especially plate

backface velocity histories. In addition, damage predictions will be compared to any

available data such as contained in [5].

(2) Viscoelasticity is important in the response of composite plates to dynamic loading.

Therefore, a viscoelastic formulation similar to [15,4] will be incorporated into the 2D

continuum damage theory and implemented into ABAQUS/EXPLICIT. This formula-

tion will of course also introduce dispersion into the composite. Also included will be

nonlinear elasticity in the normal or thru thickness direction of the plate.

(3) The new 3D continuum damage theory, developed in section 4 of this report, will be fully

implemented into ABAQUS/EXPLICIT. Viscoelasticity and nonlinear elasticity in the

thru thickness direction of the plate will also be introduced.

(4) A new thick plate/shell continuum damage theory based upon the new 3D theory of sec-

tion 4 will be developed.

(5) We will begin to investigate the introduction of the 2D and 3D continuum damage theo-

ries into an implicit FEM program such as ABAQUS/STANDARD. Implicit codes have
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typically been much more useful than explicit programs for structural dynamics types of

problems, such as underwater shock, in which one is not trying to track the actual wave

propagation in Lhe structure. Projectile impact types of problemb,, on tihe other hand, a•e

an example best modeled usually with an explicit program. Implicit approaches require

the formulation, computation and inverse of a global stiffness matrix, but can use much

larger time steps and are usually unconditionally stable. The integration of the governing

constitutive relations is also usually more involved in implicit formulations.
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8. APPENDICES

8.1 Appendix A - Reduced 1D damage model implemented in WONDY

As mentioned in the Introduction, WONDY has been used extensively in our work to study

ID plane strain behavior. In this appendix, the details of the I D continuum damage model which

has been programmed into WONDY are given. This constitutive model stems from the 2D damage

theory developed in [ 1-3], and also includes the nonlinear response of the material in compression.

Typical material and damage parameters are given for graphite/peek composite plates [6].

In the one dimensional WONDY computer models, the 1 direction is thru-the-thickness of the

composite plate, while the 2 direction is inplane (ItD plane strain models). The constitutive equa-

tion is given as follows:

Oil = CII (V1 )O e in tension (8.1a)
K1 Et1 +K.2eC + K3el in compression (3.lb)

where alI is the stress, - is the strain, C11 is the material stiffness, V, is the dunage thni the

thickness (delamination) and the K's are constants interpolated from the data in [6]. Typical val-

ues used for the K's for graphite/peek composite plates are:

KI = C1I(0) = 11.7 GPa

K2 = 114. GPa (8.2)

K3 = 684. GPa

The damage model based upon [1 -3] is expressed as:

cil (VO = - ( 1 2-V 23) El!I (VI)
C11(V1) = ( v 1 E 1 ( 1

( 1 - V23 - 2V212 (VI) (E22/ (Ell ( VI))))

Et (VI) = (1- v)_V (8.3)

v 1 2 (VI) = (1-VI)V12
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in which E,1 and E22 are the engineering moduli, and vt2 and v21 are t(ie Poisson's ratios. The

evolution of the damage V, is in the forln [1-31:

dV1  (d,(V,,t) 2(,i• = %0 / (1,110 - vI))

d, (VI, = Max[O, all -o 0 ] (8.4)
% Y (I - v2) %0

GG- ~ (1V)GO

In eqs (8.4), t is the time in seconds and di, o0, n 1, 111' -aG and cG0 are defined in [ 1-3]. Typical

values used in eqs. (8.3) and (8.4) for graphite/peek are:

E0. = 13.45 GPa

E 22 = 69. GPa

v° = 0.04 (8.5)

v 23 = COO

and for the damage threshold parameters

Om = 70. MPa

n, = 2. (8.6)

III = 4.x 10-6 sec
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8.2 Appendix B - Listing of the ABAQUS/EXPLICIT user written subroutine
for 2D continuum damage.
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SUBROUTINE VUMAT(
C... Read only variables

1 NBLOCK, NDIR, NSHR, NSTATEV, NFIELDV, NPROPS, LANNEAL,
2 STEP._TIME,TOTAL_TIME,DT,CI4NAME, PROPS,DENSITY,
3 STRAIN_INC,REIý_SPINjINC,
4 TEMP OLD, STRETCHOLD, FIELD.OLD,
5 STRESS _OLD, STATEOLD, ENER_INTERNLOLD, ENER_INELASOLD.
6 TEMP...NEW,STRETCHNEW,FIELD-NEW,

C....Write orly modifiable variables
7 STRESS_NEW, STATE...NEW, ENERINTERNNEW, ENER_INELAS.NEWI)

C . . . .. . . . .. . . . .. . . . .

INCLUDE 'ABA_PARAMS.INC'
C ............. I..................
C.-..This rountine is the 2con~t~i~nu~u~m damage theory developed
C by Neines and Randles and in the PRONT02D code -
C Transversely Isotropic Damage Model. Note as in PRONT02D
C the 1,2,3 axes in ABAQUS are not the same as given in the
C report and paper 1->2, 2->3, 3->l (from paper to ABAQIJS
C and PRONTO). Nomenclature very similar to what Nemes used
C in PRONT02D has been employed. C.T. DYKA 10/92
C$$$ $$ $ $$$$$$$ $ $ $$ $5$ $ $$$$$ $$ $ $$ $$ $ $$$ $$$ $5$ $ $$$ $ $ $$ $$ $$ $ $
C.. The 7 state variables are stored as for element I:
C applies for old and state variables
C STATE...OLD(I,l)=Vl (Thru thickness damage)
C STATEOLD(I,2)=V2 (In plane damage)
C STATE..OLD(I,3)=DOUT (Switch for the death option)
C...
C.. .NOTE: Not sure ABAQUS/EXPLICIT ha., regular DEATH OPTION! !!!
C ABAQUS does not track the strains, only the increments, so
C use the state variables to track the total strains - which
C we need to determine when the ultimate strain has been
C reached.
C STATEOLD(I, 4)=total strain(I,1)
C STATE-OLD(I,5)=total strain(I,2)
C sTATE..OV(I, 6)=total strain(I,3)
C STATE OLD(I, 7)=total strain(I,4)

C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ $$$
C.. .All arrays dimiensioned by (*) are not used in this subroutine.

DIMENSION PROPS(NPROPS) ,DENSItY(NBLOCK),
1 STRAINJ.NC (NBLOCK,NDIR+fNSHR) ,REL_,SPININC (*),
2 TEMPO0LD (*) ,STRETCH.OLD (*),
3 F1IELDOLD (*) ,
4 STRESSOLýD(NBLOCK, NDIR+NSHR) ,STATEOLD (NBLOCK. NSTATEV),
5 ENER_INTERNOLD(*),ENERJINELASOLD(*),
6 TEMP-NEW(*) ,STRETCHNEW(*),
7 FIELD_.NEW(*),
8 STESSNEW (NBLOCK, NDIR+NSHR),, -TTNEW (NB1CCK, NSTATEV),

9 ENER_INTERNNEW(*),EIER.INELAS_NEW(*)
CHARACTER *8 CMNAME

C ### ft##t t#f##ft##f###4 t##### ###t#f 4 f # f # f f ftft" #ft# ftftft# #ft# f ## 4 f f ftn t t f f f
C... Material Prope-rties

E110 PROPS(1)
E2"= PROPS(2)

RNU,.20' = PROPS(3)
RNU130 = PROPS(4)
G210 PROPS(5)
Al =PROPS(6)

A-2 =PROPS(7
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A3 = PROPS(8)
A4 = PROPS(9)
ETAl = PROPS(10)
ENi = PROPS(1l)
ýETA2 - =-PROPS(12)
EN2 = PROPS(13)
SIGGO = PROPS(14)
TAUGO = PROPS(15)
PHIGO. = PROPS(16)
PHIGi = PROPS(17)
SIGGOB = PROPS(18)
TAUGOB = PROPS(19)
PHIGOB = PROPS(20)
PHIGIB = PROPS(21)
EULT = PROPS(22)

DO 100 I=1,NBLOCK
C ... Continuum damage variable and DOUT to track death
C ... of an element

Vi = STATE_OLD (I.1)
v2 = STATE_OLD(I,2)
DOUT = STATE_OLD(I.3)

C... .OPTION TO KILL AN ELEMENT WITHOUT THE DEATH OPTION
IF(DOUT .GE. .98)V1=.98
IF(DOUT .GE. .98)V2=.98

C...........................................
c ... Stresses (abreviations)

SIGi = STRESS_OLD(I,l)
SIG2 = STRESS_OLD(I,2)
SIG3 = STRESS_OLD(I,3)
SIG4 = STRESS_OLD(I,4)

C
C---- UPDATE ELASTIC PARAMETERS. Note the 1,2,3 directions are switched
C from the reference report and paper

E22=E220* (1.-V1**2)
El1=EI1O* (1.-Al*V2**2)
G21=G210*(l.-V1**2)*(1.-A2*V2*'*2)
RNU21=RNU210*(1.-V1**2)*(l.-A3*V2**2)
RNU13=R.NU13O* (1-A4*V2**2)
C22=(1.-RNU13)*E22/(l.-RNUl3-2.*RNU21**2*E11/E22)
C12=RNU2l*El1/ (1.-RNU13-2. *PRT21**2*E11/E22)

1 RNU21*1r2*E11/E22)
C13=(l./(1.+RNU13))*(RNU13+RNU21**2*E11/E22)*Ell/(1.-RNUl3-.2.*
1 RNU21**2*E11/E22)
C44=2 .*2

C
C ---- UPDATE STRAINS - Note we use the state variables
C

STATE_NEW(I,4) =STATEOLD(I,4) + STRAININC(I,l)
STATENEW(I,5) =STATE_OLD(I,5) + STRAIN_INC(I,2)
STATENEW(I,E) =STATEý_OLD(I,6) + STRAININC(I,3)
STATENEW(I,7) =STATE_OLD(I,7) + STRAIN_INC(I,4)

C... .Determine the largest strain in each element -for the DEATH option.
c ... Look at strain(1,1) and strain(3,3) components only

STRC = MAX(STATE.YEW(I,4),STATE-NEW(I,6))
C- - --- COMPUTE Vi
C

IF(V1 .GE. .98)GO To 20
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SIGG = SIG2
TAU = SIG4
SIGGG = SIGGO*(1...V1**2)
TAUG = TAUG0*(1.-V1**2)
PHIG = PHIGO - (PHIGO-PHIG1)*Vl**2
CALL DCALC (SIGGG,TAUG,PHIG,SIGG,TAU,V1,Dl,N)
IF(N.GT.O) GO TO 105
IF (D1.LT..0.001) 130 TO 10
V1D ((Di/SIGGO) **EN1) /(ETA1* (1-V1**2))
VI V1 + VlD*DT
IF(V1 .GT. 0. 98)V1=.98

C
C---- COMPUTE V2 (also called VS)
C

JO IF (V.GE.0.98) GO TO1 20
SIGG = 5*(SIGl+51G3)
TAU =SQRT(SIG4**2+.25*(SIG1L-SIG3*w2)
SIGGB = SIGGOB/(l.-V2**2)
TAUJB = TAUGOB/(1-V2**2)
PHIB = PHIGOB - (PHIG0B-~PHIGlB)*V2**2
CALL DCALC(SIGGB,TAUIB,PHIB,SIGG,,TAUV2,D2,N)
IFIN.GT.O) GO TO 105
IF(D2d.LT.O.00001) GO TO :,,0
V2D= (D2/SIGGOB)**EN2/ElTA2
V2 = V2 ,-V2D'rDT
IF (V2.GE.0.98)V2=.98

C.. .NEMES ALSO USED - !ILL INCLUDE V2 DAMAGE TO KILL ELEMENT
20 IF(V1 .GE. .98 .OR. STRC .GT. EULT .OR V2 .GE. .98)DOUT=1.0

C ...
C 20 IF (STRC. GT. EULT) DOUT=1.0
C
C---- UPDATE STRESSES
C

STRESS.-NEW(I,1)=C11*STATILNEW(I,4)+C12*STATENEW(I.5)+
1 C13*STATE-NEW(,6)

STRESSNEW(I,2)=C22*STAT&ýNEW(I,5)+C12*(STATE_Ni,.W(I.4)+
1 STATENEW'I6)

STRESS_NEW(I,3)=C12*STATE-NEW(I,5)+C13*STATE_NEW(I,4)+
1 ClI *STATE -NEW(I,6)

STRESS_ýNEW(I,4)=C44*STATE~j1E!WCI,7)
C... .Update state variables - damage V1,V2 and DOUT 'element death)

STATE-NEW(I,I) = V1
STATE -NEW(I,2) = V2
STATE-NEW(I,3) = DOUT

100 CONTINUE
C

RETURN
105 CONTINUE

C.. .STOP CALCULATIONS N IS OUT OF BOUNDS
STOP
END
SUBROUTINE DChLC (SIGG,TAUG,PIIIG,SIGTAU,VID,N)

C... THIS SUBROUTINE DOES THE THRESHOLD CALCULATIONS FOR V1 AND VS
C... (V2) DAMAGE. EACH CALL IS FOR ONE OR THE OTHER

D=0.
N= 0

C SIGG=SIGGO* (1. -V**2)
C TAUG=TAUGO*l.-V**2)

54



c PHIC7-=PHIC0- (PHIGO-PHIGi) *V**2
F0O (TATIG/PHIG) **2/SIGG
F1l *5* (FO+SIGG)
F2=.5* (FO-SIGG)
F3=PHIG*F2
IF( (F1-SIG)/F2.GE.SQRT(1.+(TAU/F3)**2))RETURN
C1=F2* (Fl -SIG) /(F2**2+F3**2)
C2=F3*TAU/ (F2**2+F3**2)
IF(C1.LT.0.) GO TO 10

5 X1=C2+Cl*X/SQRT(1 .+X**2)
N=N+l
IF(N.GT.100) RETURN
XDIFF=ABS (XI-X)
x=x1
IF(XDIFF.GT.O.00021G0 TO 5
GO TO 20

10 X=C2/(1.-C1)
15 X2=(1 +X**2)**1.5

Xl= (C2+Cl*XI*3/X2) / (1.-C1/X2)

IF (N.GT.100)RETU'RN
XDIFF=ABS (X1-X)
x=x1
IF (XD1FF.GT.0.0001) GO TO 15

20 TAUO = F3*X
SIG0 =Fl-F2*SQRT(1 .+X**2)
D=SQRT( (SIG- SIGOI **24 (TAU-TAUO) **2)
N= 0
RETURN
END
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